If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=16384
We move all terms to the left:
2x^2-(16384)=0
a = 2; b = 0; c = -16384;
Δ = b2-4ac
Δ = 02-4·2·(-16384)
Δ = 131072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{131072}=\sqrt{65536*2}=\sqrt{65536}*\sqrt{2}=256\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-256\sqrt{2}}{2*2}=\frac{0-256\sqrt{2}}{4} =-\frac{256\sqrt{2}}{4} =-64\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+256\sqrt{2}}{2*2}=\frac{0+256\sqrt{2}}{4} =\frac{256\sqrt{2}}{4} =64\sqrt{2} $
| X+3x+3x-15=180 | | |5x+3|=3x-9 | | -3x-5(8)=-16 | | 4x+6(8)=16 | | -4a-2a-7=17 | | |11y-3|=-29 | | 530=-1.597x^2+38.431x+376.772 | | -4x=12-5 | | 14|2y-5|=18 | | 6366000000=-0.37x^2+36.76x+5743.9 | | a^2=-18a | | U=(10,5)-3u= | | 0=330x-9000-x^2 | | 0=385x-12250-x^2 | | b=4−5 | | 8n(-4)=12 | | -7xx=6 | | 34=e-17 | | 0=-16x^2+2240x-72000 | | n^2+12n+10=0 | | 7s=24 | | 36=8+64x-16x^2 | | 8(h+2)+h=5(h+4) | | X=300+.5x | | 6k+12=4(k+6) | | 3x-+5=8x-12 | | 2(3x7)+4(3x+2)=6(5x+9)+3 | | x2+14x+44=0 | | x4+3=7 | | 3(x-2)+7=19 | | 9x–7=83 | | -0.7x+1.72=-0.5+5.52 |